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As a contribution to the breakdown phenomenon of vortices in a two-dimensional 
free boundary layer, this paper deals with the question whether a single cylin- 
drical (i.e. two-dimensional) vortex can become unstable. For this reason a 
single vortex, as it occurs in a free boundary layer, is approximated by an axi- 
symmetrical vortex model. The inviscid stability theory of rotating fluids is then 
applied to this vortex model. By general stability criteria it was found that a 
vortex consisting of vorticity of one sign only is stable according to the Rayleigh 
criterion, but, if the vorticity has an extremum value outside the axis, may 
become unstable with respect to cylindrical disturbances. Furthermore, stability 
calculations for three special types of vortex were performed. It was found that 
they were more unstable with respect to cylindrical disturbances than to three- 
dimensional ones. 

1. Introduction 

In  this paper an attempt is made by means of inviscid stability theory to look 
for a reason for the breakdown of vortices in a disturbed two-dimensional free 
boundary layer which occurs in jets with large cores. 

It is known that the laminar free boundary layer is unstable under classical 
inviscid linearized stability theory because of the inflexion point in its velocity 
profile (cf. Rayleigh 1880). Experimental investigations among others by Wille 
(1952), Sat0 (1960), Schade & Michalke (1962), Michalke & Wille (1966), Frey- 
muth (1966) have shown that for large Reynolds numbers this instability occurs 
in fact and is nearly independent of the Reynolds number. It can be described 
by means of the inviscid linearized stability theory of spatially growing distur- 
bances as was shown by Michalke (19656). Furthermore, it  was found in the 
experiments that the disturbed free boundary layer rolls up into vortices. These 
vortices, however are certainly not of the type described by potential theory, 
but as real vortices they may be defined by postulating the existence of a local 
concentration of vorticity. The vortex model suggests itself, because, for example, 
the slipping motion of two consecutive vortices, which can often be observed in 
experiments, can well be explained by this model. An attempt to explain the for- 
mation of vortices in free boundary layers was made by Schade & Michalke (196a), 
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Michalke (1965a) andMichalke & Freymuth (1966). Freymuth (1966) found that 
even the formation of vortices is not essentially influenced by viscosity so that 
the rolling-up process should also be described by the inviscid equation of motion. 

The experiments show that further downstream the vortices finally break 
down and the free boundary layer becomes turbulent. Thus the question arises 
as to why the vortices break down. Domm (1956) supposed that the vortices, 
because of their growth and by the possible coalescence of two consecutive 
vortices to a bigger one, reach a critical state such that they become unstable 
due to centrifugal forces. Timme (1957), who investigated the vortices in a 
KArmAn vortex street, introduced a ‘ Reynolds number ’ which was assumed to be 
proportional to the ratio of the circulation of the vortices to the kinematic vis- 
cosity of the fluid. He supposed that the vortices break down if this ‘Reynolds 
number’ has reached a critical value. Wehrmann & Wille (1958) applied this 
concept to the vortices in jet boundary layer, while Fabian (1960) tried to 
verify it by hot-wire measurements in the free boundary layer of an axisym- 
metric jet. This hypothesis, however, seems to be unjustified, since recently 
Freymuth (1966) has found that viscosity plays no important role in the vortex 
breakdown in free shear layers. He stated that the mutual induction of the 
vortices may be responsible for their three-dimensional decay. On the other 
hand, a further reason for vortex breakdown may be that the vorticity distribu- 
tion in a single vortex moving downstream with constant velocity becomes 
unstable, which finally leads to turbulence. In  the more complicated case of the 
leading-edge vortices of a delta-wing, the theoretical results of an inviscid stabil- 
ity theory developed by Ludwieg (1960, 1964) seem to be well confkmed by the 
experimental results of Hummel (1964, 1965). Another theory of vortex break- 
down has been developed by Benjamin (1962). Nevertheless, for the vortices in 
jet boundary layers the question of vortex instability seems to be unanswered. 
Thus we will treat this problem in what follows by means of inviscid stability 
theory. 

In order to investigate the stability of a single vortex, one has to know its 
undisturbed vorticity distribution. If, as found in the experiments, the formation 
of vortices in a two-dimensional free boundary layer escaping out of a nozzle is not 
essentially influenced by viscosity, the convection of vorticity must be described 
by the inviscid vorticity equation. This means, however, that the vorticity is 
fixed at any fluid particle and remains constant as the particle moves downstream 
along its path. At the nozzle the flow is nearly stationary. If smoke is introduced 
into that region of the flow containing most of the vorticity, the fluid particles 
which pass by through the same initial points at  different time will be marked by 
that smoke. The particles form streaklines which can be observed. On the other 
hand, since at. the initial points the flow is assumed to be stationary, the vorticity 
along each streakline must be constant in time. Therefore each streakline must be 
identical with a line of constant vorticity according t o  the inviscid vorticity 
equation. 

Under these assumptions the smoke distribution observed downstream in 
the shear layer will be identical with the vorticity distribution. It is, however, 
known from smoke experiments (cf. Freymuth 1966) and shown schematically 
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in figure 1, that the free boundary layer which contains the vorticity produced at  
the nozzle wall becomes thicker, with a simultaneous folding at  the point where 
a vortex is formed. This folding-process observed in the experiments is equivalent 
to a local concentration of vorticity and agrees with the streakline pattern found 
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FIGURE 1. The rolling-up process of a free boundary layer and 
the approximated vortex model. 

theoretically (cf. Michalke & Freymuth 1966). Further downstream the streak- 
lines roll up. Finally, in a fully developed vortex, most of the vorticity must be 
concentrated on a nearly circular band as shown on the right in figure 1. These 
vortices move downstream with a constant phase velocity which is nearly half 
of the jet velocity. 

For the stability analysis a frame of reference is used which moves with the 
vortex. It is assumed that in this frame of reference the vortex is stationary, 
because the influence of the viscosity is neglected. In order to facilitate the 
analysis, we furthermore assume an inviscid single vortex with a simplified 
vorticity distribution, i.e. axisymmetrical as shown a t  the bottom right of 
figure 1. Then the vorticity Z depends only on the distance r from the vortex 
axis, that is Z = Z ( r ) ,  and the vortex induces only a circumferential velocity 
component V = V(r) .  For this approximate vortex model the stability theory 
of rotating fluids is applicable. As mentioned above we assume further that 
vortex breakdown is an inviscid phenomenon. Hence we restrict ourselves to 
inviscid stability theory. 

Since Rayleigh (1917) the necessary and sufficient inviscid stability criterion 
for inviscid rotating fluids has been known. According to this, a flow is stable if 
the square of the circulation increases for increasing radius. If we use the relation 
between the circulation and the circumferential velocity V(r )  and the vorticity 
z ( r )  respectively, this criterion is equivalent t o  the condition that the product VZ 
must always be positive for stability. In  our case this condition is always satisfied. 
Since the vorticity Z contained in the free boundary layer is of one sign only, 
the velocity V has the same sign. Hence VZ is greater than zero for every radius, 
and the vortex must be stable according to the Rayleigh criterion. 
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Little attention, however, has sometimes been paid to the fact that the Ray- 
leigh criterion was derived for axisymmetrical disturbances only. In his book 
Chandrasekhar (1961) tried to prove that the Rayleigh criterion is also valid for 
arbitrary disturbances, but evidently he was in error as was shown by Howard 
& Gupta (1962). There they discussed the general disturbance equation for a 
flow having a circumferential as well as an axial velocity component. 

After Rayleigh, many papers concerning the stability of rotating fluids 
were published, but mostly they were restricted to Couette flow-the most 
famous paper was given by Taylor (1923)-or to the small-gap problem as 
treated, for example, by Ludwieg (1960, 1964). Since we are interested in the 
stability of an infinitely extended vortex-type flow with arbitrary vorticity dis- 
tribution Z = Z ( r ) ,  we shall give in $2 the disturbance equation. In  $ 3  general 
aspects of the disturbance equation will be discussed, while in $ 4  examples of 
unstable vortex type flows which are stable according to the Rayleigh criterion 
will be investigated. 

2. The disturbance equation for inviscid rotating fluids 
Any inviscid rotating flow with a velocity component V in the circumferential 

direction only is a solution of the Euler equation of motion in a ( r ,  0,z)-cylindrical 
co-ordinate system, if 

Then the corresponding vorticity has a component Z(r)  in z-direction only with 

V = V(r) .  (2.1) 

(2.2) Z(r)  = r-l (r V)’ = V’ + V/r ,  

where primes denote differentiation with respect to r .  
In  order to study the instability of such a basic flow, we superimpose small 

three-dimensional disturbance. If we only consider normal modes, we have the 
disturbances 

u,,(r, 0, 2, t )  u,@) 

u * : ( r y O > z ~ t ~  uzl(r, 0 , z ,  t )  =g I:;] exp [i(m0 + kz - Pt) ] ,  (2.3) 

P l ( T 3  0,2, t )  
where m should be an integer for physical reasons, k a real constant (the 
wave-number in z-direction) and ,8 = Pr + iPi is complex. /3, is the disturbance 
cyclic frequency and Pi the temporal growth rate. 

Inserting (2.1) and (2.3) into the Euler equation of motion and the continuity 
equation neglecting higher order terms in the disturbances we obtain a system 
of four equations for the amplitude functions u,(~),  u,*(r), uz(r) and p(r) of the 
disturbances (2.3). These equations can be reduced to a single one for ur(r). 

we obtain finally 
# = rur, (2.4) 

with f = [m2+k2r2]-1, (2.6) 

If we introduce 

[rf$’]’ - [r-’ + F ]  q5 = 0, (2.5) 
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The connexion of $(r )  with the amplitude functions of the original disturbances 
(2.3) is given by (2.4) and 

u, = if[m$‘+ ( k 2 / v )  rZ#] ,  (2.8) 

u, = ikf[r$‘ - (m/a) Z$], (2.9) 

p = if[[arqY-mZ$], (3.10) 

where a(r )  = m( Vjr)  - p. (2.11) 

The analogous disturbance equation to (2.5)-except for a misprint-was given 
by Howard & Gupta (1962) for a flow which includes also an axial basic velocity 

The boundary conditions to be satisfied by the disturbance are determined by 
the condition that for fixed cylindrical walls at r = rl and r = r2 the normal 
velocity u, must vanish, that is 

W(r) .  

(2.12) 

If the origin belongs to the flow, it is sufficient to require that u, (0 )  is finite, that  

$ ( O )  = 0. (2.13) is 

The homogeneous disturbance equation (2.5) together with the homogeneous 
boundary conditions (2.12) define an eigenvalue problem. For fixed values (m, Ic) 
solutions of (2.5) are sought which satisfy (2.12). This is only possible for certain 
eigenvalues p = p, + ipi which will depend on (m, k). Since (2.5) is not changed if 
we replace k by - k or rn by - m and p by - p we can restrict ourselves to positive 
values of (m, k ) .  

3. General features of the disturbance equation 
From the disturbance equation (2.5) and the boundary conditions (2.12) and 

(2.13) respectively some general criteria can be derived without solving the 
differential equation for a special flow. 

If we suppose pi f 0 and write 

$( r )  = wl-px( r )  (3-1) 

in (2.5) and multiply the equation by v d - p  we obtain the differential equation 
for the function x(r), 

where 
[r3+K1--/l)fX’]’ - pp. r2. g2(1-/4 x =  0,  (3.2) 

(3.3) 

(3.4) 

$(r )  V-Pr (3.5) 

Let us f ist  discuss (3.2) for the special case p = 0 and k = 0. Then (3.2) yields 

[r3a2x’]’ - (m2 - 1) razx = 0. 

We see that for m = 1 a solution is x = constant and, therefore, 
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is a solution of (2.5). Thus for a flow in 0 < r < co with V(0)  = 0 and 
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Em V(r )  = c, + c2r 
r+m 

the boundary conditions (2.13) and (3.12) for m = 1 are satisfied, if 

pr = c2, pi = 0. (3.6) 

Therefore (3.5) is a neutral solution of (2.5), although it is not believed that (3.5) 
and (3.6) are the limit case pi -+ 0 of an eigenfunction with pi =+ 0. 

Furthermore, let us multiply equation (3.2) by the conjugate complex func- 
tion and integrate over (r,, r2). Then we get by means of partial integration and 
the boundary conditions at  (r,, r2)  

From the integral relation (3.7) one can obtain necessary conditions for insta- 
bility of an inviscid rotating flow. 

Taking first p = 0 one can easily deduce from the imaginary part of (3.7) that 
a necessary condition for instability (pi + 0) is for V 2 0 that 

4 < max (:). 
m 

For the special case of a cylinder-symmetric disturbance ( E  = 0) we find 

min - < - < max - . (r) 2 (r) (3-9) 

For the other special case of an axisymmetric disturbance (m = 0) the Rayleigh 
criterion can be derived from (3.7), namely that a necessary condition for in- 
stability (pi + 0) is 

1 (3.10) V Z  < 0 somewhere in r,  < r < r2. 

Taking p = 1 a further criterion found by Howard & Gupta (1963) is obtained 
from the imaginary part of (3.7): a necessary condition for instability (pi + 0) 

(3.11) 
is that the term 

nz(Zf)’-4k2 V8’u)lgu)l-2(m--,l?r) 

must change sign in r, < r < r2. For the special case of a cylinder-symmetric 
disturbance ( k  = O),  (3.11) implies 8’ = 0 somewhere in rl < r < r2. That means 
that the vorticity Z(r )  must have an extremum value inside the flow region. This 
condition for instability is equivalent to the inflexion point criterion for parallel 
flows. 

If we put finally ,u = 4 we obtain from the imaginary part of (3.7) the neces- 
sary condition for instability (pi =+ 0) that 

878 VZ - m2r( V / V ) ’ ~  < 0 (3.12) 

somewhereinr, < r < r2. This criterion was also found by Howard & Gupta 
(1962). For VZ > 0 and m + 0 (3.12) suggests that the three-dimensional dis- 
turbance with k =+ 0 is more stable than the corresponding cylinder-symmetric 

p r  = 07 

V 
r 
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disturbance alone ( I c  = 0). This would mean that in this case a behaviour must be 
expected which is analogous to that for plane parallel flow as stated by Squire 
(1933) .  In  fact, if we transform the co-ordinates ( r ,  8, z )  to a new system ( y ,  x, z )  

r = R + y ;  8 = x / R ;  z = x ;  (3.13) by means of 

where R denotes a radius in the vicinity of which the vorticity is concentrated, 

V ( r )  = U(y); m = aR; Zc,(r) = w(y); (3.14) then using 

we obtain from the disturbance equation (2 .5 )  

where 

{ (1 +:) f [ ( 1  + ;) w]’}’ - ( 1  +q R [ v = 0, 
1 + y / R  

(3 .15)  

If we now let R + co and have y / R  < 1 ,  then (3 .15)  tends to 

(3.16) 

(3.17) 

This is the three-dimensional inviscid disturbance equation for plane parallel 
flow for which the theorem of Squire is valid. 

4. Examples of vortex instability 
In  this chapter the inviscid instability of certain vortex-type flows is investi- 

gated. We will restrict ourselves to inviscid, infinitely extended flows for which 
the Rayleigh criterion for stability is satisfied, i.e. V Z  > 0 in 0 < r Q 00. This 
implies that the vortex consists of a vorticity concentration of one sign only. 
Let us assume that for V Z  2 0 and a fixed value of m the disturbance is more 
stable for Ic $. 0 than for k = 0 as mentioned above. Then instability can only 
occur if the vorticity Z(r)  has an extremum value outside the vortex axis, i.e. 
for r > 0. Therefore a stationary Hamel-Oseen-type vortex with 

Z(r)  = const. e-azrz, (4 .1)  

where a is any constant, must be stable and also the Rankine vortex with 

(4 .2 )  1 Z(r)  = const. for 0 < r < ro, 
Z(r)  = 0 for r,, < r. 

The simplest vortex type which should be unstable seems to be a vortex which is 
given by a cylindrical vortex sheet. 
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4.1. The instability of the cylindrical vortex sheet 

The velocity field induced by a cylindrical vortex sheet having a radius R is given 

vl(r) = 0 for 0 < r < R, 
v2(r) = V,R/r for R < r,  (4.3) 

FIGURE 2. The velocity distribution induced by a cylindrical vortex sheet. 

and is shown in figure 2. Inside the two regions 1 and 2 the vorticity is 2 f 0 
and hence by (2.19) P = 0. Thus the disturbance equation (2.18) becomes 

The general solution of (4.4) can be obtained by introducing 

$ = rw', 
which gives from (4.4) 

r 

This equation is satisfied by the modified Bessel functions. Hence the general 
solution of (4.4) inside the two regions is given by 

(4.7) 

The normalizing factors 
m2+ k2 =+ 0 which gives 

and km are introduced in order to allow k -+ 0 for 

(4.9) ! gm-1 B 2-m 
4 2 ;  BT,2 = -m 1,2' ( W b - l ) !  

where AT,Z = ___ 

The boundary condition (2.21) at r = 0 requires B, = 0, while the other a t  

(4.10) 
dK (kr)  

q52(r) = B2 km kr --E- . 
d ( W  
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In  order to determine the remaining constants A,  and B,, it is convenient to 
require that 

(i) the discontinuity sheet must be constant in time and moves with the 
fluid, 

(ii) the pressure on both sides of the sheet must have the same value. Hence, 
if the equation of the disturbed discontinuity sheet is given by 

(4.11) H ( r ,  0, z, t )  = r - H,(0, z ,  t )  = 0, 

then the condition to be satisfied is 

or in the linearized form with (2.3) 

dH - = o  
at 

aH, VaH,  +-- = u .  
In  our case we assume at r 80 rl' 

(4.12) 

(4.13) 

H,(O, 2 ,  t )  = R+g[Cexp {i(mO + kz -/It)}]. (4.14) 

Then we find a condition equivalent to (4.13): 

lim {# [mV-/3r]-11r=R+E- # [ W L V - / ~ ~ ] - ' I ~ = ~ - ~ }  = 0. (4.15) 
E'O 

The pressure condition (ii) givesfrom (2.10) 

From (4.15) and (4.10) we obtain 

(4.16) 

(4.17j 

where K = kR (4.18) 

PR A , k m  - I,(K) + B,km 
7 0  

and from (4.16) 
(4.19) 

where use is made of the differential equation (4.6) satisfied by the modified 
Bessel functions. 

The homogeneous linear system for A ,  and B, of (4.17) and (4.19) has non- 
trivial solutions if it,s determinant vanishes. Hence we obtain a quadratic equa- 
tion for the eigenvalues P. Using the Wronskian of the modified Bessel functions 

I k ( K )  K m ( K )  - K L ( K ) .  I , (K )  = K-l  (4.20) 

m KIL(K) K m ( ~ )  & K J L ( K )  ~ T , ( K ) [ K I ~ ( K ) . &  ( K )  - 13 . (4.21) 
we find 

( )$I V 
R 

p=-o { 
Amplified disturbances (pi + 0) are only possible, if 

K r m ( K )  Km(K) [ K I A ( K )  K m ( K )  - 11 < 0. (4.22) 

Since I;&(K) 2 0, &(K)  < 0 and I m ( ~ )  2 0, K,(K) 2 0, it follows from (4.30) 
that (4.23) is always satisfied. Therefore the eigenvalues are 

(4.23) 
mk'G(4  &?&), p, = -0 V 

R 
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Because 
1 

l i m ~ l l , ( ~ ) K ~ ( ~ )  = - 
K+o 2' 

(4.24) 

the eigenvalues become for the special case k = 0 

limp, = limp. = -- V0m 
KJO K-0 ' R 2 '  

On the other hand, since l i m ~ Y ~ ( ~ )  K,(K) = - (4.26) 

(4.25) 

1 
K J W  2' 

we have also (4.27) 
KJCC 

1 
lim K I ~ ( K )  K,(K) = - 

2' Finally, for fixed K 
m+m 

(4.28) 

Thus for large values of m the eigenvalues become independent of k and tend to 
the solution (4.25) for k = 0. For large values of the radius R of the cylindrical 
vortex sheet the limits of the eigenvalues by (4.26) and (3.14) are 

limp, = limp, = YoQa, (4.29) 

which is known to be the solution for the plane vortex sheet. In  figure 3 and 
figure 4 the influence of the axial wave-number k upon the frequency and the 
growth rate respectively is shown. We see that the influence of k is small-note 
the enlarged scales-expecially on the growth rate. Furthermore, for k $: 0, pi 
does not exceed the value for k = 0. Thus the three-dimensional disturbance 
is no more unstable than the two-dimensional one. Nevertheless, the cylindrical 
vortex sheet is always unstable for m 2 1. 

R+m R-tcc 

FIGURE 3. The influence of the axial wave-number k on the unstable frequencies. 
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4.2. The instability of a vortex with uniform vorticity 

In  54.1 it  was found that the infinitely thin cylindrical vortex sheet is always 
unstable for m b 1. Let us now investigate the case of a vortex consisting of 
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FIGURE 4. The influence of the axial wave-number k on the  temporal growth rate. 

finitely thick cylindrical vortex sheets. In  order to study the influence of the 
shape of the velocity distribution we assume a vorticity distribution taking 
constant but different values in each of t h e e  regions. Thus we have in a normal- 
ized form 

(4.30) 1 .Z,(r) = 2, in 0 < r < 6, 
Z,(r) = 2, in 6 < r < 1, 
Z,(r) = 0 in 1 < r < 00, 

with 0 < S < 1. The corresponding velocity distribution is according to (2.2) 

I V,(r) = 0*5Z,r, 
V,(r) = 0.5 Z,[r - r-l] + r-l, 
V,(r) = r-l. 

Since V(r)  is to be a continuous function, it must be required that 

Then we find 

(4.31) 

(4.32) 

(4.33) 

As mentioned above we only treat the case 2, > 0 and 8, 
The total amount of vorticity is equal to the circulation I?, namely: 

0, that is 0 < y < I/&. 

I’ = 27r Z(r)r dr = 27r (4.34) 1: 
that is, a constant. The vorticity and the velocity distribution is shown in figure 5. 

42 Fluid Mech. 29 



658 Alfons Michalke and Adalbert Timme 

From (2.7) we see that for 7e = 0 inside each region, F = 0 because of 2' = 0. 
Then the disturbance equation (2.5) has the simple form 

(4.35) 

zzL - - -- - - - - - 

21. 

I 
I 
l 

0 1 0  0 
I 
I 
I 

S 1 r  
* 

I 

FIGURE 5. The vorticity and velocity distribution due to 
equations (4.29) and (4.30) respectively. 

the general solution of which is for m $. 0 

#(r)  = A*P+ B*r-m. (4.36) 

The boundary conditions at  r = 0 and r = co require solutions for each region 
We shall only treat this case I% = 0 in the following. 

as follows 

(4.37) 

with m 2 1. At the boundaries of the regions the radial velocity u, and the 
pressure p must be steady. This means that by (2.4) and (2.10) 

i $,(TI = ATrm,  
$ J r )  = A,*rm+Bgr-m, 

# 3 ( 4  = Ez r-m, 

I- $ = const. 
[ V - (/3/m) r ]  $' - 24 = const. 

(4.38) 

on each side of r = 1 and r = S. From (4.37) and (4.38) we find at Y = 1: 

[ 2 ( m - p ) - Z z ] A ; - Z 2 B ;  = 0, (4.39) 

while at  r = S [ Z 2  - Z,] Sm& + [mZ, - 2/3 + 2, - Z,] S-mEg = 0. (4.40) 

For non-trivial solutions the determinant of the linear equations (4.39) and (4.40) 
for AX and Eg must vanish. Thus a quadratic equation for the eigenvalue p 
is obtained, the solution of which is 

2/3 = m + ( m - 1 ) ~ Z , f ( [ m - Z 2 - ( m - 1 ) ~ Z , ] 2 - Z Z ( Z 2 - Z 1 ) S 2 m ) ~ .  (4.41) 
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The flow is unstable, if p becomes complex. This is only possible, if 

2, > 2, 2 0 ,  that is 6 > y 2 0. (4.42) 

This condition corresponds to the conditions of an extremum value of the vor- 
ticity for r > 0 as shown in $3. Therefore the Rankine vortex which is present 
for 2, = 0 or 2, = 2, is always stable as mentioned above. If (4.42) is satisfied, 
the cyclic frequency is 

and the growth rate is 
p,= Q[m+(m-1)42,] (4.43) 

(4.44) pi = Q(Z,(Z, - 2,) 62m - [m - 2, - (m - 1) +2,]2)4. 

Inserting (4.33) into (4.43) and (4.44), /3, and pi are obtained as functions of 6,y 
and m, namely 

(4.45) 
1 p, = ,[m+(m- 

(4.46) 

(4.47) 

Let us first look for which pairs of the profile parameters (6, y )  the flow becomes 
unstable. To do this we calculate the neutral curves in the (6, 7)-plane which are 

(4.48) given by the equation a2y2 + 2a,y + a, = 0. 

It isfoundthatform= 1andm=2thef lowiss tab le i fO<6< l a n d 0  < y < 6 .  
For m > 3 we have instability for all values of (6,y) lying inside the neutral 
curves which are shown in figure 6 for m = 3; 4; 5. It is evident that the presence 

where a, = S2{4S2m - [m( 1 - P) - 2]2}, 

a, = - 6{2( 1 + 62) 62m+ [m( 1 - 6 2 )  - 31 [1+ 62-m(1- P)]}, 

a 2 -  - 462m+2 - [ 1 + a2 - m( 1 - 8912. 

0.6 t- I 

6 

FIQURE 6. The neutral curves in the (6, y)-plane for na = 3, 4, 5. 
42-2 



660 Alfons Michalke and Adalbert Timme 

of the inner vorticity 2, - y has not always a stabilizing influence as one might 
have expected. For example, at m = 3 and 6 = 0.5 the flow is stable for y = 0, 
but unstable for 0 < y < &. 

The eigenvalues for amplified disturbances as function of m can be calculated 
from the equations (4.45) and (4.46) for fixed profile parameters (6, y ) ;  the cyclic 
frequency p, depends linearly on m by (4.45). The growth rates /Ii are shown 
in figure 7 for y = 0 and various values of 6. In  this case only a sheet of vorticity 
with magnitude 2, = 2[1- 62]-1 and thickness d = 1 - 6 is present, while the 
total amount of the vorticity, which is equal to the circulation I?, is constant by 
(4.34). We see on figure 7 that with increasing 6 the maximum amplification 

m 

FIGURE 7. The growth rate pi ws. m for y = 0 and 8 = 0.9, 0.8, 0.7, 0.6, 0.5. 

increases strongly as well as the unstable range of m, that is the thinner the 
sheet in which the vorticity is distributed the more unstable it becomes. This is 
analogous to the plane linear shear layer (cf. Michalke & Schade 1963). Also 
here the result tends to that of the linear shear layer, if the mean radius of 
the vorticity sheet tends to infinity. 

In  figures 8 and 9 the growth rate pi is shown for y = 0.1 and y = 0-2 respec- 
tively, that is for 2, =k 0. It is obvious that with increasing y the maximum growth 
rate as well as the unstable range of m slightly decreases. For 6 + 1 the vorticity 
distribution 2, tends to a cylindrical vortex sheet. But, although the eigenvalues 
tend to finite limiting values, they do not agree with those obtained from a 
stability calculation using directly a vortex sheet (see 54.1). Thus the limiting 
process 6 + 1 in (4.45) and (4.46) is not applicable. This may be due to the use 
of the first condition of (4.38) at the boundaries Y = 6 and r = 1 instead of the 
corresponding condition (4.15). 
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1.5 

pi 1.0 

0.5 

0 2 4 6 8 10 12 14 

FIGURE 8. The growth rate pi 218. rn for y = 0.1 and 8 = 0.9, 0-8, 0.7, 0.6, 0-5. 

rn 

rn 
FIGURE 9. The growth rate pi 08. rn for y = 0.2 and 6 = 0.9, 0.8, 0.7, 0-6, 0.5. 

4.3. The instability of a vortex with a special continuous 
vorticity distribution. 

While in 554.1 and 4.2 the instability of vortex-type flows was investigated for 
which the disturbance equation (2.5) became simple and could be solved in 
closed form, we here assume a vortex with continuously distributed vorticity . 
Thus the eigenvalue of (2.15) must be computed numerically. The velocity dis- 
tribution chosen is given by 
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and the corresponding vorticity distribution is 
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(4.50) 

where n is a profile parameter. The vorticity distribution has a maximum a t  
r = 1, and for increasing profile parameter n the vorticity is increasingly concen- 
trated at the cylindrical sheet a t  r = 1. In  the limit n -f co the flow tends to that 
of a cylindrical vortex sheet at  r = 1 which was investigated in 0 4.1. The circula- 
tion I?, of the flow at infinity 

r, = lim r(r) = 2n (4.51) 
r-+m 

is constant. Furthermore, for all r we have 72 2 0. 
In  the following we restrict ourselves to the case n = 2. Then we have 

V(r)  = r-l[l - exp ( - 2r6/3)], 

Z(r )  = 4r4exp ( -  21.6/3), 

Z’(r) = 16r3[1 - f l ]  exp ( - 2r6/3). 

The velocity and the vorticity distribution of this flow is shown in figure 10. 

(4.52) I 
\ 

r 

FIGURE 10. The vorticity and velocity distribution given by (4.51). 

In  order to evaluate the eigenvalues /? for amplified disturbances, the dis- 
turbance equation (2.5) 

has to be solved with boundary conditions 

I(0) = 0, 
lim $(r)/r = 0. 

r-m 

(4.53) 

(4.54) 

(4.55) 
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The function F(r) can be written by (2.7) for m + 0 
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[[l+ (E)2]l'.;[;-&] v v  p - 1  I}. (4.56) 

It is evident from (4.56) and (4.52) that F(r) is antisymmetric in r. Furthermore, 

for pi + 0 F(O) = 0 (4.57) 

and limF(r) = 0. (4.58) 

From the latter it follows that the disturbance equation (4.53) tends asymptotic. 
ally to the equation (4.4). Thus the asymptotic solution satisfying (4.55) has to 

r+m 

be for r -+ co. 
(4.59) 

For pi =t= 0 and r -+ 0 it follows from (4.57) that (4.53) tends to (4.35). Thus by 

(4.54) for r -+ 0 #(r)  - rm. (4.60) 

The order of the differential equation (4.53) can be reduced, if we substitute 

into (4.53). Then we obtain the corresponding Riccati equation in @ 

where P(r) is defined by (4.56) and (4.52). The inversion of (4.61) gives 

r 
rn2 + k2r2 ' 

@(r) = 

Hence by (4.60) we have for r = 0 
@(O) = l /m 

andforr -+ 00 by (4.59) @(r) = - 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

where the differential equation and the recurrence relations for the modified 
Bessel functions have been used. Thus @(a) = 0 for k + 0 and @(m) = -m-l 
for k = 0. 

The method of computing the eigenvalues p of the disturbance equation 
(4.53) was similar to that described by Michalke (19653). For fixed values m 
and k the complex differential equation (4.62) was integrated numerically start- 
ing from r = 0 to r = ro = 1-1 which gives @,fro) and backwards from r = 2 
to r = ro which gives Q2(r0). At r = 2 it was found IF( 2) I < 10-lo for m 2 2 so that 
the value of @(2) can be calculated from the asymptotic representation of @(r) 
given in (4.65). At r = 0 the derivative @ ' ( O )  was found to be zero. For arbitrarily 
chosen different pairs of p = /3, + ;pi the difference 

G(PV Pi) = @1(ro) - @2@0) (4.66) 

was evaluated and improved values of p were calculated from the approximate 
zeros of G(P,, Pi) by linear interpolation. This procedure was then repeated until 
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I GI was small enough. The computation was performed on a Zuse Z 23 v digital 
computer using a Runge-Kutta procedure. 

0.10 

0 2 4 

- 
,/’ 

- 

/*  
k = O  

I 
f 

I 

6 0  2 4 6 
+ 

m 
FIGURE 11. The frequency PT and the growth rate pi as functions of rn for k = 0. 

t m = 5  

I 

I 
I I L I I 1 I. 

0 0.5 1.0 1.5 0 0.5 1.0 1 5 
Ic 

FIGURE 12. The frequency p,. and the growth rate Pi as functions of k for rn = 3, 4, 5. 

For k = 0 the eigenvalues Pr(m)  and Pi(m) are shown in figure 11 for m = 2; 
3; 4; 5; 6, although the eigenvalues are not mathematically restricted to integral 
m. Maximum amplification is found at  m = 4. The neutral value for m = 1 is 
also included in figure 11. The other neutral eigenvalue with m > 6 cannot be 
computed in this way, because apparently P(r) becomes singular at  two points 
where ( V/r)Tc = &/m. The computation has also been performed for three- 
dimensional disturbances with k $. 0. In  figure 13 the eigenvalues are shown for 
m = 3; 4; 5 as function of k. We see that for k =+ 0 the growth rate Pi becomes 
smaller than for k = 0. Therefore also here the three-dimensional disturbances 
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are less unstable than the two-dimensional disturbances as suggested by (3.12). 
But it is evident that the vortex-type flow given by the vorticity distribution 
(4.52) is unstable although the Rayleigh criterion predicts stability. 

5. Conclusion 
In  the introduction it was shown what vorticity distribution in a vortex occur- 

ring in two-dimensional free boundary layers must be expected. We found that 
the vorticity should be arranged in a nearly circular band somewhere within 
which it should reach its maximum value. A vorticity distribution with a maxi- 
mum outside of the vortex axis was also found for the vortices in  a K&rm&n 
vortex street by Timme (1957). The question to be answered was when such 
an arrangement of vorticity might become unstable and so initiate the vortex 
breakdown. To simplify the problem we assumed the vorticity distribution to 
be approximately axisymmetric and, by neglecting the influence of viscosity, 
to be stationary. By this means the inviscid stability theory of inviscid rotating 
fluid was applicable. It was found that a vortex flow consisting of vorticity of one 
sign only can be unstable to cylinder-symmetrical disturbances, if the vorticity 
has an extremal value outside the axis. 

Thus the statement of Howard & Gupta (1962) that the Rayleigh criterion is 
not applicable for non-axisymmetric disturbances was conibmed. This type 
of instability has been observed experimentally by Weske & Rankin (1963) in a 
special arrangement. Furthermore, it was found that for the special cases 
investigated here the two-dimensional cylinder-symmetric disturbances are 
apparently more strongly amplified than the corresponding three-dimensional 
ones. 

On the basis of the results of the vortex models used here we can expect that 
vortices in a two-dimensional free boundary layer may also become unstable, 
although their more complicated shape may influence the instability properties. 
But we cannot conclude that this type of vortex instability is responsible for 
vortex breakdown, since so far no experimental confirmation has been possible. 
Thus an experimental investigation of the vortex breakdown phenomenon in 
two-dimensional free boundary layers seems to be very desirable though it may 
be very difficult to handle. 

Another question remaining open is what may occur if a peripheral disturbance 
with non-integral m is excited in a vortex. This could be arranged, for instance, 
by means of a ribbon parallel to the z-axis oscillating in the radial direction, 
although the frequency ,8 then must be real and m complex. It is generally agreed 
that cylinder-symmetric disturbances with integral m’s are physically reasonable. 
Nevertheless, the disturbance equation possesses also solutions for non-integral 
m’s, but then the disturbed flow is non-unique. But it should be worthwhile to 
investigate whether just these solutions may cause the vortex breakdown leading 
to turbulence. 

This investigation was made at  the Institut fiir Turbulenzforschung of the 
Deutsche Versuchsanstalt fur Luft- und Raumfahrt e. V. at  Berlin. The authors 
wish to express their gratitude to Professor Dr -1ng. R. Wille, the Director of 
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the Institut. The authors are also much indebted to the Deutsche Forschungs- 
gemeinschaft, Bad Godesberg, which kindly gave financial support for the numeri- 
cal computations. 
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